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Computer simulations are presented of the isotropic-to-nematic transition in a liquid crystal confined be-
tween two parallel plates a distance H apart. The plates are neutral and do not impose any anchoring on the
particles. Depending on the shape of the pair potential acting between the particles, we find that the transition
either changes from first order to continuous at a critical film thickness H=Hx, or that the transition remains
first order irrespective of H. This demonstrates that the isotropic-to-nematic transition in confined geometry is
not characterized by any universality class, but rather that its fate is determined by microscopic details. The
resulting capillary phase diagrams can thus assume two topologies: one where the isotropic and nematic
branches of the binodal meet at H=Hx, and one where they remain separated. For values of H where the
transition is strongly first order the shift �� of the transition temperature is in excellent agreement with the
Kelvin equation. Not only is the relation ���1 /H recovered but also the prefactor of the shift is in quantitative
agreement with the independently measured bulk latent heat and interfacial tension.
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I. INTRODUCTION

It is generally accepted that the first-order isotropic-to-
nematic �IN� transition in liquid crystals confined between
two parallel plates becomes continuous when the distance H
between the plates becomes small �1–6�. Indeed, many simu-
lations are consistent with this picture �7–11� and show that
the first-order IN transition terminates at a critical film thick-
ness Hx. Some of these studies have also provided evidence
of a continuous transition taking place when H�Hx. Note
that as H→0 the system becomes effectively two dimen-
sional �2D�. More recently, a �mathematically rigorous�
proof appeared, showing that first-order IN transitions in 2D
are also possible �12,13�. Inspired by this proof, computer
simulations of liquid crystals in 2D were performed, which
indeed uncovered strong first-order IN transitions too
�14,15�. Hence, the IN transition in confinement can be con-
tinuous, as well as first order. Finally, there is the scenario of
no transition occurring at all in thin films �16,17�, not even a
continuous transition of the Kosterlitz-Thouless �KT� type
�18�. Regarding experiments on confined liquid crystals, it
has proved difficult to resolve continuous IN transitions in
thin films �2,19�. Pronounced coexistence between isotropic
and nematic domains is typically observed �19–21�, which
suggests that a transition does take place and that it is first
order.

The qualitatively different manifestations of the IN tran-
sition in confinement �continuous, first order, absence� rule
out any universality class for this transition. What remains of
the IN transition in thin films is determined by microscopic
detail. The only regime where some “agreement” may be
obtained is in the bulk three-dimensional �3D� limit H→�.
Here, one usually observes a first-order IN transition, with
long-range order in the nematic phase. The transition thus
breaks the rotational symmetry of the isotropic phase. At the
mean-field level, this implies that the transition must be first
order �22�. We emphasize that fluctuations can change this
result: even in 3D bulk, a genuine continuous IN transition is
also possible �22,23�. However, most bulk experiments yield

a first-order IN transition, and so the mean-field approxima-
tion appears to be valid in this regime. As the film thickness
H decreases, fluctuations become increasingly important, and
we expect three scenarios to unfold. In the first and most
commonly accepted scenario, the IN transition becomes con-
tinuous when the film thickness drops below a critical thick-
ness Hx. In addition, confinement is expected to destroy
long-range order in the nematic phase, due to the Mermin-
Wagner theorem �24�. Instead, quasilong-range order may
result, where the orientational correlations decay as a power
law with distance. In the second �lesser known� scenario, the
IN transition remains first-order irrespective of the film
thickness, i.e., all the way down to H→0. In the third sce-
nario, evidence for which was recently provided �16,17�, the
IN transition vanishes completely in the thin-film limit.

Given the three scenarios for the IN transition in confine-
ment, all of which are qualitatively different, it is of funda-
mental interest to establish which “microscopic detail” is re-
sponsible for the scenario that ultimately occurs. The aim of
this paper is to identify one possible mechanism, using com-
puter simulations of a generalized Lebwohl-Lasher �LL�
model. As it turns out, the generalized LL model is capable
to reproduce all three scenarios, by tuning just a single pa-
rameter in the Hamiltonian. The effect of this parameter is to
make the pair interaction “sharp and narrow,” meaning that
particles interact when aligned but are otherwise rather indif-
ferent to each other. Depending on this parameter, the cross-
over with decreasing film thickness from first order to con-
tinuous behavior can be eliminated completely and the IN
transition remains first-order irrespective of H.

The outline of this paper is as follows. We first introduce
the generalized LL model and describe the simulation
method. Next, we present simulation data showing one ex-
ample where the IN transition becomes continuous below a
critical film thickness Hx and a second example where the
transition remains first-order irrespective of the film thick-
ness. We do not consider the scenario where the transition
vanishes below Hx as this has recently been done elsewhere
�16,17�. A stringent test of the Kelvin equation, describing
the shift of the transition temperature as a function of film
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thickness is also included. We end with a discussion and
summary in Sec. IV.

II. MODEL AND SIMULATION METHOD

We consider a lattice model similar in spirit to the LL
model �25�. To each site i of a 3D lattice, a 3D unit vector d� i
�spin� is attached, which interacts with its nearest neighbors
via

E = − ��
�i,j�

�d� i · d� j�p, �1�

with exponent p and coupling constant �. In this work we
absorb a factor of 1 /kBT in the coupling constant, with kB the
Boltzmann constant and T the temperature, and so � plays
the role of inverse temperature. The lattice is a L�L�H
rectangular box, with periodic boundary conditions in the
lateral L directions but not in the H direction. The parameter
H thus plays the role of the film thickness; the minimum
thickness that can be studied in this way equals H=1, corre-
sponding to a single lattice layer. This setup is identical to
the slab geometry used in earlier simulations of the confined
LL model �7�. Note that spins at the walls have a lower
number of nearest neighbors, but that the walls are otherwise
neutral, i.e., we do not impose any anchoring conditions.

In the original LL model the exponent of Eq. �1� equals
pLL=2. In the bulk limit H→�, a �weak� first-order IN tran-
sition is observed �25–29� at ��	1.34 �30�. In the thin-film
limit H=1 recent simulations indicate the absence of any
transition when p=2 �16,17�. In this work we consider
p�2. This modification is expected to enhance first-order
phase transitions �31�, which may then even survive the limit
H→1 �14,15�. In line with previous work �27,29,32�, we
analyze Eq. �1� in terms of the histogram

P�E,S� 
 P�E,S�H,L,�� , �2�

defined as the probability to observe a system with energy E
and nematic order parameter S in a sample of thickness H,
lateral extension L and at inverse temperature �. The distri-
bution is obtained by computer simulations using Wang-
Landau �33,34� and transition matrix �35� sampling; addi-
tional details pertaining to the present model are provided in
Ref. �32�. The nematic order parameter S is defined in the
usual way as the maximum eigenvalue of the orientational
tensor

Q	
 =
1

2N
�
i=1

N

�3di	d
 − �	
� , �3�

with di	 the 	 component �	=x ,y ,z� of the orientation d� i of
the spin at site i, the sum over all N=HL2 lattice sites and
�	
 the Kronecker delta. In a perfectly aligned sample it
holds that S=1, whereas an isotropic sample yields S→0 in
the thermodynamic limit �hence, S defined in this way is an
intensive quantity�. A final ingredient of this work is the use
of finite-size scaling �FSS�; needed because we seek thermo-
dynamic limit properties. The thermodynamic limit of a film
of thickness H is defined by extending the lateral extension

L→�. In the bulk thermodynamic limit, both H and L are
taken to infinity.

III. RESULTS

Depending on the exponent p in Eq. �1�, we expect the
first-order IN transition either to terminate at a critical film
thickness Hx or to remain first-order irrespective of H. The
case p=2, i.e., the original LL model, is an example of the
former scenario. In the bulk limit one obtains a first-order
transition �25–29�, which terminates when the film thickness
equals Hx�8–16 lattice layers �7�. In the 2D limit H=1 no
phase transition is observed for p=2 �16,17�. We emphasize
that the latter finding is not without some controversy, as
previous other numerical studies of this system concluded
that a phase transition does take place, namely a continuous
transition of the KT type �see discussion in Ref. �16��.

A. Crossover scenario

We now consider Eq. �1� using a larger exponent, p=8, to
demonstrate that also a continuous IN transition is possible
in thin films. To determine the order of the transition we use
two FSS methods: the first was initially given by Lee and
Kosterlitz �36� and is based on the energy distribution P�E�,
defined as the probability to observe a system with energy E

P�E� 
 � � ��E − E��P�E�,S��dE�dS�,

with P�E ,S� the joint distribution of Eq. �2�.
At a first-order transition P�E� becomes bimodal, see Fig.

1 for an example, where the logarithm of the distribution is
shown. For finite L the bimodal structure persists over a
range of � values. As L increases the range becomes smaller
and in the thermodynamic limit L→� there is only one �
where P�E� is bimodal, then featuring two � peaks. Hence,
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FIG. 1. Logarithm of P using p=20 in Eq. �1� with H=1 and
L=25. The value of � has been chosen to give peaks of equal
height. The free-energy barrier, labeled �F, is given as the differ-
ence between the peak maxima straddling the minimum. The dis-
tance labeled �� corresponds to the latent heat density. The distri-
bution is plotted as a function of the negative energy density such
that the left peak corresponds to the isotropic phase and the right
peak to the nematic phase.
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for finite L there is some freedom in choosing � and in Fig. 1
we have tuned � such that the peaks are of equal height.

At a first-order transition the peak height, �F in ln P�E�,
see the vertical arrow in Fig. 1, corresponds to the free-
energy cost of interface formation �37�. We therefore expect
�F�Ld−1, with L the lateral extension of the film and d=2
�recall that films are effectively two dimensional�. To deter-
mine the order of the transition, Lee and Kosterlitz �36� pro-
posed to measure �F versus L, which should yield a linear
increase for a film. Results for several values of H are shown
in Fig. 2�a�. The data clearly indicate that the crossover sce-
nario is taking place: for H=6 �F increases linearly with L,
consistent with a first-order transition. In contrast, for H=3
�F vanishes for large L, implying the absence of a first-order
transition.

To obtain the crossover thickness Hx more accurately we
use a second FSS method, based on the specific heat

C = ��E2� − �E�2�/N , �4�

with N=HL2 the number of lattice sites �volume�. For given
L and H a graph of C versus � reveals a maximum; the value
of the maximum defines CL,max�H�. At a first-order transition
the maximum scales with the volume of the system, that is
CL,max�H��N �38�. In a film of fixed thickness H this implies
CL,max�H��L	̃ with 	̃1st=2. The result is shown in Fig. 2�b�
for several values of the film thickness. For H=6 a fit yields
	̃=2.00, confirming that the transition is first order. For
H=4 we obtain 	̃=1.74, indicating that a first-order transi-
tion is absent. Hence, we conclude that the crossover thick-
ness Hx=5. Precisely at Hx a fit yields 	̃=1.94, which is still
very close to the first-order value. Presumably for H=5 the
IN transition is weakly first order.

For H�Hx, i.e., where the transition is distinctly first or-
der, there is two-phase coexistence at the transition inverse
temperature. It seems natural to characterize the phases with
the nematic order parameter S. This approach is somewhat
dangerous as confinement could destroy long-range nematic
order in the thermodynamic limit: limL→� S=0 irrespective
of �. For H=1 this follows rigorously from the Mermin-
Wagner theorem �24�. The practical problem, affecting both
simulations and experiments �39�, is that the decay of S with
L may be very slow. In fact, finite samples at low tempera-
ture typically reveal substantial order, even when the
Mermin-Wagner theorem applies �39�. The present simula-
tions are no exception. Shown in Fig. 3�a� is S versus � in the
bulk limit H→� for several system sizes L �the bulk simu-
lations were performed on a 3D cube of edge L with periodic
boundaries in all directions�. A first-order IN transition tak-
ing place at �	1.52 �32�, where S jumps to a finite value, is
clearly seen. More importantly, for � above the transition, S
becomes independent of system size, at least on the scale of
the graph; the latter is consistent with the formation of long-
range nematic order, as expected in 3D. In Fig. 3�b� we show
the corresponding result for a film of thickness H=10, which
is still above the crossover thickness, and so the transition
remains first order. The behavior is similar to the bulk case,
in the sense that S “jumps” at the transition and for large � it
appears to saturate at a finite value independent of the lateral
film extension L. Hence, Fig. 3�b� provides no evidence of S
decaying to zero in the thermodynamic limit L→�, but
rather that the film supports long-range nematic order. If S
eventually does decay to zero, it is clear that huge system
sizes, beyond the reach of any foreseeable simulation, are
required to observe it.

To avoid these subtleties, we characterize the coexisting
isotropic and nematic phases in the film with their energy
densities �iso�H� and �nem�H�, respectively. These are simply
the peak positions in the energy distribution of Fig. 1.
Recall that the latent heat of the transition equals
LL�H�=�nem�H�−�iso�H�, where the subscript is a reminder
of finite-size effects in the lateral film extension. The latent
heat is related to the specific-heat maximum �38�

LL�H� = 4CL,max�H�/N , �5�

and the extrapolation to L→� is performed assuming that
L��H�−LL�H��1 /N. The average energy density

�L�H� 

�iso�H� + �nem�H�

2
=

1

N
� EP�E�dE ,

obtained at the specific heat maximum is extrapolated analo-
gously: ���H�−�L�H��1 /N. Once L��H� and ���H� have
been determined, the coexisting energy densities follow. The
latter may then be plotted in a capillary phase diagram, see
Fig. 4, where the coexistence densities versus inverse film
thickness 1 /H are shown. Since the transition ceases to be
first order at the critical thickness Hx the isotropic and nem-
atic branches terminate.

We now consider H�Hx. For H=1 and p=2 in Eq. �1�,
recent results �16,17� indicate the absence of any phase tran-
sition �not even a continuous transition of the KT type�. Part

0

100

200

300

400

500

10 20 30 40 50
L

C
L,

m
ax

(H
)

(b) H=3
H=4
H=5
H=6

0

2

4

6

8

10
10 20 30 40 50

L

∆F

(a) H=3
H=4
H=5
H=6

FIG. 2. Evidence of the crossover scenario, whereby the IN
transition ceases to be first order below a critical film thickness; the
results in this plot refer to p=8 in Eq. �1�. The free-energy barrier
�F versus the lateral film extension L is plotted for several values
of the film thickness H in �a�. For large H the barriers increase
linearly with L, consistent with a first-order transition; for smaller H
the barrier vanishes with increasing L. The maximum value of the
specific heat versus L is plotted in �b�, again for several H.
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of the evidence is based on the failure of the Binder cumu-
lant to intersect. At a continuous phase transition the ratio
U1= �S2� / �S�2 becomes independent of system size �40,41�,
where S is the nematic order parameter. In simulations, this
can be used to locate a continuous transition, by plotting U1
versus � for several system sizes L. At the transition inverse
temperature ���H� of the film in the thermodynamic limit the
curves for different lateral extensions L are expected to in-
tersect. While for H=1 and p=2 no intersections are found
�17�, the result for p=8 is radically different, see Fig. 5�a�.
Shown is U1 versus � using H=1 for several values of L. The
curves clearly intersect and so we conclude that a continuous
phase transition is taking place. This result strikingly illus-

trates the nonuniversality of the IN transition: whether a tran-
sition occurs for H=1 is determined by the exponent p in Eq.
�1�, i.e., a microscopic detail. Using p=8 we have verified
that continuous transitions exist for all values of the film
thickness H�Hx. The results for H=2 and H=4, where H is
approaching Hx, are shown in Figs. 5�b� and 5�c�, both of
which reveal cumulant intersections.

The fact that the cumulants intersect is a consequence of
hyperscaling. At the transition inverse temperature ���H� the

order parameter decays �S��L−
̃, while the susceptibility

=N��S2�− �S�2� diverges �L�̃. The exponents 
̃ and �̃ are
connected via the hyperscaling relation

�̃ + 2
̃ = d , �6�

with spatial dimension d=2 for a film. This relation implies
that the order parameter and its root-mean-square deviation
scale �Lx with the same exponent x. Consequently, appropri-
ately constructed cumulant ratios, such as U1, become inde-
pendent of L whenever hyperscaling holds. By tuning the
inverse temperature � we have determined ���H� in our
simulations by requiring that the scaling of �S� and  with L
conforms to hyperscaling, i.e., we numerically solved Eq.
�6�. A solution to Eq. �6� for each H�Hx could indeed be
found; the resulting estimates of ���H�, as well as the expo-

nents 
̃ and �̃, are listed in Table I. As expected, ���H� in
Table I is close to the cumulant intersections of Fig. 5, the
discrepancy being less than 0.1%. Note also that ���H� in-
creases with decreasing H. The latter is consistent with the
general tendency of confinement to lower phase transition
temperatures.

For H=1 the system has become 2D and the exponents
reflect “pure” values, free from any crossover effects. Note
that the exponents for H=1 deviate significantly from the XY

values 
̃XY =1 /8 and �̃XY =7 /4 �42�, strongly suggesting a
different universality class. For H�1, the trend is that


̃→0, while �̃→2. Our interpretation is that, for
1�H�Hx, one observes crossover scaling behavior �3�,
governed by two competing fixed points: one being the first-
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FIG. 3. Variation in the nematic order parameter S versus in-
verse temperature � using p=8 in Eq. �1� for several values of the
film thickness H. In �a� we show the bulk result H→�, whereas �b�
and �c� were obtained in films of finite thickness H. Note that for �a�
and �b� the IN transition is first order while it has become continu-
ous in �c�.
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at 1 /Hx�0.2, above which the transition is no longer first order and
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order transition at H=Hx and the other being the continuous
transition at H=1. The exponents for 1�H�Hx are there-
fore “effective exponents,” with values between those of the

H=1 system, and the “first-order” values 
̃1st=0 and
�̃1st=d=2 �38�. Note that effective exponents do not convey
any fundamental information: if we were able to simulate
arbitrarily large L values arbitrarily close to the transition
inverse temperature, the same exponents as for the H=1 sys-
tem would be found.

The important result to take from this analysis is that for
p=8 in Eq. �1� and H�Hx a continuous phase transition is
found; by enforcing hyperscaling the transition inverse tem-
perature ���H� can be quite accurately obtained.

We now consider how the nematic order parameter S de-
pends on � and L; a typical result is shown in Fig. 3�c� where
H=2 was used. We note that S increases with � and that the
slope dS /d� reaches a maximum close to ���H�. In contrast
to the first-order transitions observed for H�Hx, S does not
saturate at high � but decreases steadily with increasing L;
this behavior is typical for all H�Hx. Our simulation data
thus suggest the absence of long-range nematic order in the
thermodynamic limit when H�Hx. This rules out a conven-
tional critical point, since then the order parameter grows as
a power law S� t
, t�0, implying S�0 in the nematic
phase, with distance from the transition

t = � − ���H� , �7�

and 
 the critical exponent of the order parameter. It is most
likely, therefore, that the continuous transition we observe is
a topological transition of the KT type �18�.

Consistent with the KT scenario is our previous result of

the order parameter decaying �S��L−
̃ and the susceptibility
diverging �L�̃, while obeying hyperscaling. For complete-
ness, we provide in Fig. 6 some raw simulation data for the
susceptibility. Clearly visible is that  versus � reveals a
maximum, becoming more pronounced for increasing L. In
principle, the inverse temperature �L,�H� where the suscep-
tibility reaches its maximum, in a film of thickness H and
lateral extension L, can be extrapolated using

�L,�H� = ���H� +
b

ln�L/c�1/� , �8�

with nonuniversal constants b and c, and where the exponent
� characterizes the exponential divergence of the correlation
length ��exp�bt�� for t�0, with t given by Eq. �7�. For the
XY model it holds that �XY =1 /2, but since we did not re-
cover XY exponents in Table I the application of Eq. �8�
requires that � be fitted also, implying a four-parameter fit.
We found that such a fitting procedure was numerically dif-
ficult to perform, and hence we did not determine ���H� in
this manner.

Finally, we note that also the specific heat, defined in Eq.
�4�, is consistent with the KT scenario. Plotted in Fig. 7 is the
variation in C with � for several L, using two values of the
film thickness. In both cases a maximum is revealed, but for
H=1 it grows only weakly with L. This is consistent with a
negative specific-heat exponent, implying that C remains fi-
nite in the thermodynamic limit, which agrees with the KT

TABLE I. Phase transition properties for H�Hx, for the con-
tinuous IN transition. Listed is the transition inverse temperature

���H�, along with the exponents 
̃ and �̃, versus the film thickness
H. The results refer to p=8 in Eq. �1�.

H �� �H� 
̃ �̃

1 2.450 0.19 1.63

2 1.864 0.17 1.67

3 1.716 0.15 1.71

4 1.650 0.10 1.811.00
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FIG. 5. Cumulant analysis of Eq. �1� using p=8. Shown is U1

versus � using several values of the lateral film extension L, for �a�
H=1, �b� H=2, and �c� H=4. The value of � at the cumulant inter-
section yields the transition inverse temperature ���H� of the ther-
modynamic limit L→�.
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scenario. For H=2 we observe that C already grows quite
profoundly with L. We again attribute this to the crossover to
a first-order transition where, ultimately, the specific-heat
maximum should scale �L	̃, with 	̃1st=2, see also Fig. 2�b�.

B. First-order transitions

We now consider the IN transition using p=20 in Eq. �1�.
In this case, the transition is strongly first order, even in the
thin-film limit. The application of the Lee-Kosterlitz scaling
method for H=1 is shown in Fig. 8�a�, where the linear
increase in the barrier �F with L is clearly visible. The scal-
ing of the specific-heat maximum also confirms a first-order
transition, see Fig. 8�b�, showing the expected quadratic de-
pendence of CL,max�H� on L. Since increasing the film thick-
ness makes the transition more strongly first order, it is clear
that for p=20 no crossover can occur. In the capillary phase
diagram, see Fig. 9, the isotropic and nematic branches of the
coexisting energy densities do not terminate, but continue all
the way to H→1.

C. Kelvin equation

Finally, we study the variation in the inverse transition
temperature ���H� with the film thickness for those cases
where the IN transition is first order. We expect ���H� to fit
to the Kelvin equation �4� as
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FIG. 6. Variation in the susceptibility  with inverse temperature
� for several values of the lateral film extension L, using film thick-
nesses �a� H=1 and �b� H=2. Both of these values H�Hx and so
the IN transition is continuous. Note the logarithmic vertical scale.
The data were obtained using p=8 in Eq. �1�.
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�� 
 1 − ��/���H� =
2��

L�H
, �9�

where �� is the bulk �H→�� interfacial tension, �� the bulk
IN transition inverse temperature and L� the bulk latent heat
density. In deriving this equation complete wetting is as-
sumed �4�. All quantities that appear in Eq. �9� can, in prin-
ciple, be extracted from finite-size simulation data with rela-
tive ease. For example, ���H� at a first-order transition can
be obtained from �L,k�H�; the latter is defined as the inverse
temperature where the ratio of the peak areas in the energy
distribution P�E� equals k. For an optimal value k=kopt,
which can be found using trial-and-error, the L dependence
in �L,k�H� becomes negligible and ���H� can be accurately
obtained �32�. The resulting estimates of the transition in-
verse temperatures, for both p=8 and p=20, are provided in
Table II, using only values of the film thickness where the
transition is first order.

Similar to previously, bulk H→� results are obtained us-
ing L�L�L systems with periodic boundaries in all direc-
tions. The bulk latent heat density L� is obtained from the
specific-heat maximum using Eq. �5� and is once again ex-
trapolated to L→�, where now N=L3. The resulting esti-
mate of L� is also listed in Table II. To obtain the bulk
interfacial tension �� we use the method of Binder �37�.
Simulating a large and stretched L�L�D system D�L
with periodic boundaries in all directions, the logarithm of
the energy distribution P�E� reveals a pronounced flat region
between the peaks, see Fig. 10. The flat region indicates that
the isotropic and nematic phase coexist with only small in-
teractions between the two interfaces. Hence, the average
peak height �F is related to the bulk interfacial tension

�� = lim
L→�

�L, �L = �F/�2L2� , �10�

yielding an elegant method of obtaining ��. Provided L is
large enough, the result should not depend on the elongation
D, but inspection of Fig. 10 reveals this is not quite true,

especially for p=8. This could indicate that some interaction
between the interfaces remains, or that L was not large
enough. In any case, using the largest available system size,
we obtain ��	0.05 for p=8 and ��	0.29 for p=20 �in
units of kBT per lattice spacing squared�. Alternatively, �L

TABLE II. Dependence of the transition inverse temperature
���H� on the film thickness H, for selected values of H where the
IN transition is first order. Results are shown for exponents p=8
and 20 in Eq. �1�. The variation in ���H� with H should follow the
Kelvin equation, see Eq. �9�. The bottom three lines list the bulk
�H→�� transition inverse temperature �� the bulk latent heat den-
sity L�, and the bulk interfacial tension ��, which are required in
order to compare to the Kelvin equation.

p=8 H �� �H� p=20 H �� �H�

5 1.614 1 2.769

6 1.593 2 2.175

7 1.578 4 1.962

8 1.568 8 1.874

10 1.555 10 1.858

15 1.540 30 1.821

30 1.528

50 1.525

100 1.522

�� 1.521 �� 1.806

L� 0.909 L� 1.727

�� 0.06 �� 0.30
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FIG. 9. Capillary phase diagram of Eq. �1� using p=20. Shown
is the variation in the coexisting energy densities �iso�H� and
�nem�H� versus the inverse film thickness 1 /H. In this case no cross-
over occurs and the IN transition remains first order irrespective of
H. The isotropic and nematic branches of the binodal therefore do
not terminate, but continue all the way to H=1.

0

2

4

6

8

10

12

14

0.5 1.0 1.5 2.0

−ρ

ln
P

L,
ε

∆ρ

∆F

(b) p=8

0

20

40

60

80

0.0 0.5 1.0 1.5 2.0 2.5

∆ρ

∆F

(a) p=20

FIG. 10. Plots of ln P as obtained in completely periodic simu-
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can be measured in a cubic periodic system of size L and
extrapolation to L→� using

�L = �� + c1 ln L/L2 + c2/L2, �11�

with constants ci, can be attempted �37�. When using this
procedure we obtain slightly higher values of the interfacial
tension, namely, ��	0.08 and ��	0.31 for p=8 and
p=20, respectively. Hence, for p=20 the estimates for ��

agree reasonably well, whereas for p=8 some discrepancy
remains. In Table II the average of both estimates is pro-
vided.

We now have all quantities needed to put the Kelvin equa-
tion to the test, see Eq. �9�. Shown in Fig. 11 is �� versus
1 /H, for both p=8 and p=20, using only values of H where
the transition is first order. Provided the Kelvin equation
holds, the resulting plots should be linear. For p=8 this is
clearly not the case; only in the limit 1 /H→0, i.e., where the
transition is strongly first-order, is agreement observed. In
contrast, using p=20 the Kelvin equation holds for all values
of the film thickness, including H=1. The slope a of the lines
in Fig. 11 can be obtained from a fit; following Eq. �9� it is
expected that a=2�� /L�, allowing for a stringent quantita-
tive test. For p=20 we obtain by fitting a	0.34, which is in
excellent agreement with 2�� /L�	0.35 calculated using the
independent estimates of Table II. For p=8 the fit yields
a	0.14, where only the largest three values of H were
used. Once again, this is in excellent agreement with
2�� /L�	0.13 obtained from Table II.

IV. DISCUSSION AND SUMMARY

In this paper, we have provided results regarding the IN
transition in liquid crystals confined between neutral walls.
The main conclusion to be taken from this work is that a
single universal scenario describing the nature of this transi-
tion as function of the film thickness H does not exist. Using
a generalized version of the LL model, we have explicitly
demonstrated that the first-order IN transition can terminate
at a critical thickness Hx, below which it becomes continu-
ous, or that it can stay first-order irrespective of H. The sce-
nario that takes place is determined by a single parameter in
the Hamiltonian, namely p in Eq. �1�, which sets the “sharp-
ness” of the pair interaction. When the transition is suffi-
ciently strongly first-order excellent agreement with the
Kelvin equation is also obtained. In particular, we not only
observe the 1 /H shift of the transition inverse temperature
but also the prefactor of the shift is in quantitative agreement
with the independently measured bulk latent heat and inter-
facial tension. However, when the IN transition is only
weakly first order clear deviations appear and the Kelvin
equation significantly underestimates the inverse temperature
shift, see Fig. 11�a�.

The two different manifestations of the confined IN tran-
sition presented in this work yield two distinct phase diagram
topologies: one where the isotropic and nematic branches of
the binodal terminate at the critical thickness Hx and one
where they continue irrespective of H. It is of some interest
to compare the resulting phase diagrams to other works. The
topology of the p=8 phase diagram, see Fig. 4, is commonly
encountered in confined colloidal rods and plates �9–11,43�.
To facilitate the comparison, the energy density in Fig. 4
should be interpreted as the analog of the particle density in
colloidal systems. In agreement with Fig. 4, the first-order IN
transition in colloidal systems also terminates at a critical
thickness �9–11,43�. It is also interesting to see that the nem-
atic branch of the binodal in Fig. 4 shows rather extreme
outward curvature as the bulk limit is approached. Colloidal
platelets reveal similar behavior, albeit that here the effect
appears in the isotropic branch �43�. In contrast with colloi-
dal systems is the fact that Eq. �1� with p=8 in the bulk limit
yields a first-order transition that is too strong. Defining the
relative strength of the transition as

r =
�nem − �iso

�nem + �iso
, �12�

we obtain r	0.38 for Eq. �1� with p=8, while Onsager’s
exact solution �44� for infinitely slender rods yields
r	0.12. This discrepancy can be fixed by using a lower p in
Eq. �1�. For instance, p=5 gives r	0.15 �32�, which is much
closer to Onsager’s result. Note that p=5 still exceeds the
original LL value p=2. Indeed, it has been pointed out that
the original LL model yields a bulk IN transition that is too
weakly first order compared to what is observed in fluids of
rods �45�.

The second phase diagram topology, where the binodal
branches do not terminate in thin films, is obtained for
p=20 in Eq. �1�, see Fig. 9. The resulting phase diagram is of
fundamental importance, since it clearly demonstrates that
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FIG. 11. Test of the Kelvin equation. Plotted is the inverse tem-
perature shift �� of Eq. �9� versus the inverse film thickness 1 /H,
using exponents p=8 �a� and p=20 �b� in Eq. �1�.
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first-order IN transitions in thin films are also possible and
that the crossover to a continuous transition need not neces-
sarily take place. It is interesting that experiments so far have
not produced clear evidence of a continuous IN transition in
thin films �2,19–21�. This is consistent with a phase diagram
topology as shown in Fig. 9. However, it is obvious that the
model of Eq. �1� with p=20 does not capture the bulk limit
correctly, since the bulk IN transition ought to be weak,
whereas p=20 yields a very strong first-order transition.
Clearly, some features are still lacking in Eq. �1�, for instance
a coupling between the orientational and spatial degrees of
freedom of the particles, as well as anchoring effects at the
walls. Investigations which incorporate these effects are pos-
sible directions for future work.

Finally, using p=8 and H�Hx our results show that a
genuine continuous IN transition can also take place. Since

long-range nematic order is not observed a transition of the
KT type �18� is the most likely scenario. This result is inter-
esting because using p=2 one finds that Eq. �1� is without
any kind of phase transition in the thin-film limit �16,17�.
Hence, the nature of the IN transition in thin films is ulti-
mately determined by microscopic details. This means that a
single universality class for the IN transition cannot exist.
Depending on the details of the interaction, there can be both
first order and continuous transitions as well as no transition
occurring at all.
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